翻訳と辞書 |
Minkowski–Steiner formula : ウィキペディア英語版 | Minkowski–Steiner formula In mathematics, the Minkowski–Steiner formula is a formula relating the surface area and volume of compact subsets of Euclidean space. More precisely, it defines the surface area as the "derivative" of enclosed volume in an appropriate sense. The Minkowski–Steiner formula is used, together with the Brunn–Minkowski theorem, to prove the isoperimetric inequality. It is named after Hermann Minkowski and Jakob Steiner. ==Statement of the Minkowski-Steiner formula==
Let , and let be a compact set. Let denote the Lebesgue measure (volume) of . Define the quantity by the Minkowski–Steiner formula : where : denotes the closed ball of radius , and : is the Minkowski sum of and
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Minkowski–Steiner formula」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|